最近中文字幕在线资源,久久国产精品偷,国产强被迫伦姧在线观看无码,成熟女人特级毛片WWW免费

歡迎來(lái)到冀群(江蘇)儀器有限公司網(wǎng)站!
咨詢熱線

13236572657

當(dāng)前位置:首頁(yè)  >  技術(shù)文章  >  英國(guó) Labplant 噴霧干燥儀在奶粉中的應(yīng)用

英國(guó) Labplant 噴霧干燥儀在奶粉中的應(yīng)用

更新時(shí)間:2021-11-30  |  點(diǎn)擊率:2777

英國(guó) Labplant 噴霧干燥儀在奶粉中的應(yīng)用

 

Labplant spray dryer tests

 

 

The milk used was reconstituted in the following way:

 

200g  milk powder

 

1.7L of tap water

 

giving 2L of milk with a measured density of 1.045 at 21’C.

 

We used a fixed flow, whatever the experiment ; pump flow set at 5, corresponding to

13.5mL/min.

 

Varying the injection temperature of the product

 

We did a first test with an injection temperature of 130’C and then a second test at 140’C.

 We saw that spray drying was achieved, apparently, comfortably at these two 

temperatures.Effectively no liquid ran along the walls of the main spray chamber, even at

130’C. This meant that we could work at 140’C or 130’C given the stipulated flow.

In theory it is preferable to work at 140’C, because the higher the temperature the better

the yield. We will try to prove this through our experiments.

 

Varying the compressed air ratio / feed flow

 

 

We worked with a flow set at 5 (13.5mL/min) and compressed air set at 3 bars

(constant air inlet valve opening).

 

In theory to increase the size of the agglomerate, it is necessary to favour the agglomeration

 mechanism over the drying process. One of the possible means is to decrease the spraying

 rate. In the case of this equipment, to decrease the spraying rate you can either decrease the

flow of compressed air through the injection nozzle (while keeping a constant pressure) or

you can decrease the pressure of the compressed air (while keeping a constant flow).

 

Therefore we tried two tests with constant air and liquid flows, varying the pressure from 2

to 3 bars.We observed the look of the powders we obtained ; it was difficult to decide just

with the naked eye, an additional granulometric(?) study would be necessary, but it did seem

that the powder obtained with 3 bars of pressure was effectively finer than that obtained with

 2 bars.

 

Research into the effective operational limits of the spray dryer

 

 

We retained the same solution of reconstituted milk.

 

At a given flow and pressure of air, we increased the flow of liquid from level 5

(13.5mL/min) to level 10 (28.8mL/min). We very quickly saw that the formation of the

spray in the atomisation tube was not good : in effect the quantity of liquid going through

the tube was too much and could not be vaporised on exiting the tube. This was why we had

some liquid that ran out of the tube, ran along the walls of the spray chamber, of the fan

chamber (cyclone?) and even in the recuperation chamber. Under these conditions the yield

of finished product would be bad.

 

QUANTITATIVE STUDY

 

 

The experiments carried out and the experiment details are given below.

 

Experiment 1 : starting from 100g/L of reconstituted milk

 

Amount of milk powder

 200g


Amount of water

  1700g


Volume of milk

2L


Density of milk

      1.045g/mL


Humidity of milk

        89.47 % mas


Injection temp (??)

  130’C


Injection flow

       13.5mL/min


Working time

  40 min


Compressed air pressure

 3 bars


Humidity of labo

     21.8 %HR

   6g vapour / m3 air

Ventilator flow

   70 m3/h


Gas exit temp

77’C


Air exit humidity

    18.8 %HR

    21.3g vapour / m3 air

Bottle size

339g


Bottle + wet milk

391.9


Bottle + dry milk

           390


 

From the experiment details we calculated the following:

 

humidity of the milk : 100 x water mass (water mass + powder mass)

 

numerical application : % humidity of the milk = 100 x 1700/(1700+200) = approx 89.5%

the mass of the wet milk we collected = 391.9 – 339 = 52.9g

 

the mass of the dry matter we collected = 390 – 339 = 51g

 

humidity of the solid = 100 x (52.9 – 51)/52.9 = approx 3.6%

 

Materials ‘balance sheet’ of the dry milk over the life of the experiment:

 

at the start : dry matter is the result of the solution to be tested

 

at the exit : dry matter of the solid that was obtained

 

Numerical application

 

a) at the start : 13.5mL/min x 1.045 g/mL x 40 min x (100-89.47)/100 = approx 59.4g

b) at the exit : 51g

 

c) solid yield = 100 x 51 / 59.4 = approx 85.9%

 

Materials ‘balance sheet’ of the water over the life of the experiment

 

b) at the start : (13.5mL/min x 1.045 g/mL x 40 min x 89.47 / 100) + 70 m3/h x 6 g/m3 x40/60 = 784.8 approx of water

 

c) at the exit : (52.9g x 3.6 /100) + (70m3/h x 21.3 g/m3 x 40/60) = approx 995.9

 

d) water yield = 100 x 995.9 / 784.8 = approx 127%

 


日本一本免费一区二区| 成人国产经典视频在线观看| 中国少妇videos露脸hd| 国产精品天堂avav在线| 农村老熟妇乱子伦视频| 欧美变态口味重另类在线视频| 无码人妻精品中文字幕| 嫩草伊人久久精品少妇AV| 国产a级毛片| 亚洲人成网站观看在线播放 | 男人边吻奶边挵进去av片无码| 亚洲欧美熟妇综合久久久久| 亚洲AV无码码潮喷在线观看| 强被迫伦姧惨叫在线视频| 中国人在线观看免费高清| 拔萝卜高清在线视频观看| 色婷婷在线精品国自产拍| 日日狠狠久久8888偷偷色| 极品少妇粉嫩小泬V片可看| 久久久久琪琪去精品色| 中文在线 | 中文| 精品麻豆国产色欲色欲色欲WWW| 亚洲性爱视频| 最新国产精品福利2020| 欧美熟妇另类久久久久久多毛| 国产97色在线 | 免| 永久免费40分钟看大片| 久久99精品九九九久久婷婷| 丰满肥臀大屁股熟妇激情视频 | 国产精品久久久久久亚洲毛片| 精品香蕉一区二区三区| 黄 色 网 站 成 人 免费| 亚洲一卡一卡二新区无人区| 国内少妇人妻丰满AV| 岛国无码AV不卡一区二区| 欧美日韩在线视频| 无码OL丝袜高跟秘书在线观看| 一本到高清视频不卡dvd| 国产亚洲精品久久久闺蜜| 国产aⅤ无码专区亚洲av| 久久久久人妻精品一区三寸|